25968104

9781423516262

Optical Characterization and Modeling of Compositionally Matched Indium Arsenide-Antimonide Bulk and Multiple Quantum Well Semiconductors

Out of Stock

The item you're looking for is currently unavailable.

Ask the provider about this item.

Most renters respond to questions in 48 hours or less.
The response will be emailed to you.
Cancel
  • ISBN-13: 9781423516262
  • ISBN: 1423516265
  • Publication Date: 2004
  • Publisher: Storming Media

AUTHOR

Air Force Inst of Tech Wright-Patterson AFB OH School of Engineering and Management, Phillips, Scott C.

SUMMARY

Indium arsenide-antimonide (InAsSb) semiconductors have been determined to emit in the 3-5 micrometer range, the window of interest for countermeasures against infrared electro-optical threats. This experiment set out to cross the bulk to quantum well characterization barrier by optically characterizing two sets of compositionally matched type I quantum well and bulk well material samples. Absorption measurements determined the band gap energy of the bulk samples and the first allowed subband transition for the quantum wells. By collecting absorption spectra at different temperatures, the trend of the energy transitions was described by fitting a Varshni equation to them. The expected result of the quantum well always having slightly higher energy than its bulk counterpart was observed. An etalon effect also was observed in the quantum wells, caused by the cladding layers in those samples. Photoluminescence spectra also were collected to characterize the change in electron temperature (Te) as the excitation power was varied. As expected, electron temperature increased with increasing power and increasing temperature. The start of the longitudinal optical phonon-dominated cooling range due to excitation intensity also was determined for the samples from 1/Te. It was found that the quantum well required higher excitation intensities to achieve this effect. Lastly, the energy transitions found for the quantum well samples were compared to those found by a finite element method model. The predicted energies all had a constant value above what was found experimentally, indicating the program had a translation error within it. (10 tables, 47 figures, 18 refs.)Air Force Inst of Tech Wright-Patterson AFB OH School of Engineering and Management is the author of 'Optical Characterization and Modeling of Compositionally Matched Indium Arsenide-Antimonide Bulk and Multiple Quantum Well Semiconductors', published 2004 under ISBN 9781423516262 and ISBN 1423516265.

[read more]

Questions about purchases?

You can find lots of answers to common customer questions in our FAQs

View a detailed breakdown of our shipping prices

Learn about our return policy

Still need help? Feel free to contact us

View college textbooks by subject
and top textbooks for college

The ValoreBooks Guarantee

The ValoreBooks Guarantee

With our dedicated customer support team, you can rest easy knowing that we're doing everything we can to save you time, money, and stress.